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Abstract 

The Overture framework is an object-oriented environment for solving partial 
differential equations in two and three space dimensions. It is a collection of C++ 
libraries that enables the use of finite difference and finite volume methods at a level 
that hides the details of the associated data structures. Overture can be used to solve 
problems in complicated, moving geometries using the method of overlapping grids. It 
merges geometry, grid generation, difference operators, boundary conditions, data-base 
access and graphics into an easy to use high level interface. 

1 Introduction 
The design of Overture has evolved over the past 15 years or so from the Fortran 
based CMPGRD[7] environment to the current C++ version [5, 61. Although the Fortran 
implementation was used for complicated three-dimensional adaptive and moving grid 
computations, the programs were difficult to write and maintain. Overture was designed 
to have at least all the functionality of the Fortran code but to be as easy as possible to 
use; indeed, an entire PDE solver on an overlapping grid can be written on a single page 
(see section 2.7). 

A composite overlapping grid consists of a set of logically rectangular curvilinear grids 
that overlap where they meet and together are used to describe a computational region 
of arbitrary complexity. This method has been used successfully over the last decade 
and a half; primarily to solve problems involving fluid flow in complex, often dynamically 
moving, geometries [2, 3, 10, 11, 231. There are a number of reasons why the design 
and implementation of a flexible overlapping grid solver is quite complex. First of all 
the data structures required to hold geometry information (vertices, Jacobian, boundary 
normals, interpolation data, etc.) and the information for moving grids, adaptive grids 
and multigrid are extensive. Secondly, complicated partial differential equations are solved 
using sophisticated numerical algorithms; for example, a current application in our group 
involves low Mach-number combustion with many reacting species. In addition, techniques 
such as block structured adaptive-mesh-refinement [l, 2, 201 may be used to locally 
increase grid resolution and increase overall computational efficiency. If the simulation 
is to run on a parallel architecture, there are correspondingly more issues involved in 
writing the code. The net result of the data structures, advanced algorithms, and modern 
architectures is a PDE solver code that is an extremely complex system. Successfully 
writing, debugging, modifying and maintaining software that implements this system is a 

‘http://wnnv.llnl.gov/casc/Overture 
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FIG. 1. Displaying results from a moving grid computation using the Overture framework. 

daunting if not impossible task using a traditional structnred programming approach and 
procedural languages such as Fortrsn or C. This has provided the primary motivation for 
the development of the Overture framework in C++. 

There are a number of other very interesting projects developing scientific object- 
oriented frameworks. These include the SAMRAI framework for structured adaptive mesh 
refinement .[22], PETSc (the Portable Extensible Toolkit for Scientific Computation) [18], 
POOMA (Parallel Object Oriented Methods and Applications)(lS] and Diffpack[S]. 

2 The Overture framework 
The main class categories that make up Overture are as follows: 

l Arrays 1211: describe multidimensional arrays using A++/P++. A++ provides 
the serial array objects, and P++ provides the distribution and interpretation of 
communication required for their data parallel execution. 

l Mappings [14]: define transformations such as curves, surfaces, areas, and volumes. 
These are used to represent the geometry of the computntional domain. 

. Grids [8, 131: define a discrete representation of a mapping or mappings. These 
include single grids, and collections of grids; in particulnr composite overlapping grids. 

l Grid functions [13]: storage of solution values, such xs density, velocity, pressure, 
defined at each point on the grid(s). 



3 The Overture Framework 
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FIG. 2. An overview of the Overture classes 

l Operators [4, 121: provide discrete representations of differential operators and 
boundary conditions 

e Plotting [17]: a high-level interface based on OpenGL allows for plotting Overture 
objects. 

l Adaptive Mesh Refinement: The AMR++ library for patch based refinement is 
described in section 2.6. 

Solvers for partial differential equations are written using the above classes. 

2.1 Array operations 
A++ and P++ [al] are array class libraries for performing array operations in C++ in 
serial and parallel environments, respectively. The use of P++ is the principle mechanism 
by which the Overture framework operates in parallel, there is little code in Overture 
outside of P++ which is specific to parallel execution. 

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not requiring 
any modification to the C++ compiler or language. A++ provides an object-oriented array 
abstraction specifically well suited to large scale numerical computation. It provides efficient 
use of multidimensional array objects which serves to both simplify the development of 
numerical software and provide a basis for the development of parallel array abstractions. 
P++ is the parullek array class library and shares an identical interface to A++, effectively 
allowing A++ serial applications to be recompiled using Pff and thus run in parallel. 
This provides a simple and elegant mechanism that allows serial code to be reused in the 
parallel environment. 
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P++ provides a data parallel implementation of the array syntax represented by the 
A++ array class library. To this extent it shares a lot of commonality with FORTRAN 
90 array syntax and the HPF programming model. However, in contrast to HPF, P++ 
provides a more general mechanism for the distribution of arrays and greater control as 
required for the multiple grid applications represented by both the Overlapping Grid model 
and the Adaptive Mesh Refinement (AMR) model. Additionally, current work is addwssing 
the addition of task parallelism as required for parallel adaptive mesh refinement. 

Here is~ a simple example code segment that solves Poisson’s equation in either a serial 
or parallel environment using the A++/P++ classes. Notice how the Jacobi iteration for 
the entire array can be written in one statement. 

// Solve u-xx + u-yy = f by a Jacobi Iteration 
Range R(0.n) // define a range of indices: 0,1,2,...,n 
floatArray u(R,R), f (R,R) // ___ declare two two-dimensional arrays 
f =  1.: u = cl.: h = I./n; /I __. initialize arrays and parameters 
Range I(l,n-0, J(l,n-1); // define ranges for the interior 

for( int iteration=O; iterationC100; iteration++ ) 
u(1.J) =  .25r~u~I+l,J~+u~I-l.J~+u~I,J+l~+u~I~J-l~-f~I,J~*~h*h~~; // ___ data parallel 

2.2 Mappings, grids and grid generation 
The geometry of the computational domain is defined by a set of mappings, one mapping 
for each grid. In general, a mapping defines a transformation from R” to R’“. In particular, 
mappings can define lines, curves, surfaces, volumes, rotations, coordinate stretchings, 
rtc.[l4]. The base class Mapping contains the data and functions that apply to all mappings. 
Specific types of mappings arc dcriwtl from t,his base ~1~s. Mappings contain a variety of 



FIG. 4. Overlapping grid for (1 valve, port and cylinder. 

information and functions that can be useful for grid generators and solvers. For example, 
mappings contain information about their domain space, range space, boundary conditions 
and singularities. Mappings are easily composed, allowing coordinate stretching, rotations, 
translations, bodies of revolution, etc. The inverse of a mapping is always defined, either 
analytically or by discrete approximation. 

Grids define a discrete representation of a mapping. There are several main grid classes 
[8, 131. The Mapped&id class defines a grid for a single mapping that contains, among 
other things, a mapping and a mask array for cut-out regions. The GridCollection class 
defines a collection of MappedGrid’s. The CompositeGrid class defines a valid overlapping 
grid, which is essentially a GridCollection plus interpolation information. Grids contain 
many geometry arrays such as grid points, Jacobians , normal vectors, face areas and cell 
volumes. 

Overture has support for the creation of overlapping grids for complicated geometries. 
The overlapping grids shown in figures (3) and (4), for example. were created entirely with 
Overture tools. Current work involves the creation of grids for geometries imported 
from computer-aided-design packages. Overture has a sophisticated overlapping grid 
generator, Ogen 1151, that automatically determines how component grids overlap one 
another, computing which points to interpolate and removing points that lie outside the 
computational domain. 

2.3 Grid functions 
Grid functions represent solution values at each point on a grid or grid-collection. There 
is a grid function class (of float’s, int’s or double’s) corresponding t,o each type 
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of grid [13]. So, for example, a MappedGridFunction lives on a MappedGrid and a 
CompositeGridFunction lives on a CompositeGrid. Grid functions are defined with up 
to three coordinate indices (i.e. up to three space dimensions) and up to five component 
indices (i.e. they can be scalars, vectors, matrices, S-tensors,...). Since they are derived 
from A++ arrays, all of the array operations are defined. In the following example, a grid 
function is made and assigned values at all points on the grid. 

SphereMapping sphere; // mapping for a spherical shell 
MappedGrid mg(sphere); // grid for a spherical shell 
mg.update(); // compute some geometry arrays 
Range all; // used as a place marker for coordinates 
floatMappedGridFunction u(mg,all,all,a11,2); // define a 3D grid function with 2 components 
Index 11,12,13; 
get1ndex(mg.dimension,11,12,13); // define indices for all grid points 
// first component of u = sin(x>*cos(y) : 
u~Il,I2,I3,O~=sin~mg.vertex~Il,I2,I3,0~~*cos~mg.vertex(II,I2,I3,1)); 

Notice that when the f 1oatMappedGridFunction is declared, the number of grid points 
does not have to be specified since this information is contained in the MappedGrid. 

2.4 Differential operators 
Operators define discrete approximations to differential operators and boundary conditions 
for grid functions. Many different types of approximations can be used. For example, 
the class MappedGridOperators [12] defines finite-difference style operators, while the 
class MappedGridFiniteVolumeOperators [4] defines finite-volume style operators. An 
operator class for incompressible flow Godunov methods has also been implemented. The 
Projection class computes the divergence-free part of a velocity function and is used in 
some of our incompressible flow codes. Here is an example using one of the operator classes: 

. . . 
MappedGrid mgcsphere); 
MappedGridOperators op(mg>; // Define operators for a MappedGrid 
floatMappedGridFunction u(mg), v(mg), coeff; 
u.setOperators(op); // associate operators with a grid function 
. . . assign u here . . . 
v=u.xo; // take the x derivative of u 
// form the matrix for the discrete Laplacian: 
coeff=u.xxCoefficientsO+u.yyCoefficientsO+u.zzCoefficientsO; 
// another way to form the matrix for the Laplacian: 
coeff=u.laplacianCoefficientsO; 

The result of the statement u.x(> is a grid function containing the x-derivative of u (on 
a curvilinear grid). The last line in the above example generates a discrete representation 
of the Laplacian operator (stored as a 27 point stencil in the second-order accurate case). 
This coeff grid function can be passed to a sparse matrix solver, using for example the 
Oges class in Overture [16]. 

2.5 Boundary Conditions 
The programming model for boundary conditions is to use ghost points (instead of one-sided 
difference approximations). A library of elementary boundary conditions such as Dirichlet, 
Neumann, mixed, extrapolation, etc. has been defined. Solvers define more complicated 
boundary conditions in terms of these elementary ones. The interface is quite simple, as can 
be seen in the following code fragment that sets boundary conditions for the incompressible 
Navier-Stokes equations on a no-slip wall. 
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// no-slip wall: 
// (1) (u,v,w> = 0. 
// (2) extrapolate ghostline values 
// (3) set the divergence of (u,v,w) equal to zero 

const int wall=5; // This value is associated with a boundary condition 
// value that is given to each side of each grid 

Range V(O,numberDfDimensions-I); // velocity components 

u.applyBoundaryCondition(V,dirichlet, wall,O.); 
u.applyBoundaryCondition(V,extrapolate, wall); 
u.applyBoundaryCondition(V,generalizedDivergence,wall); 
u.finishBoundaryConditions(); 
1 

2.6 Adaptive mesh refinement 
Adaptive mesh refinement is the process of permitting local grids to be added to the 
computational domain and thus adaptively tailoring the resolution of the computational 
grid. The block-structured AMR algorithm implemented in Overture provides such 
support for both simple problems with a single underlying grid, and problems that use 
the composite overlapping grid method. The AMR algorithm itself uses the multiple grid 
functionality provided by the basic Overture classes in an essential way. AMR results is 
greater computational efficiency but is difficult to support. AMR++ is a library within 
the Overture framework which builds on top of the previously mentioned components 
and provides support for Overture applications requiring adaptive mesh refinement. 
AMR++ is current work being developed and supports the adaptive regridding, transfer 
of data between adaptive refinement levels, parent/child/sibling operations between local 
refinement levels, and includes parallel AMR support. AMR++ is a parallel adaptive mesh 
refinement library because it is uses classes which derive their parallel support from the 
A++/P++ array class library. 

2.7 Writing PDE solvers 
This example demonstrates the power of the Overture framework by showing a basically 
complete code that solves the partial differential equation (PDE) 

w + CwlT + h2Ly = Y(U,, + uyy) 
on an overlapping grid. 

int main0 
{ 

Composite&id cg; // create a composite grid 
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in 
floatCompositeGridFunction u(cg>; // create a grid function 
u=i.; // assign initial conditions 
CompositeGridOperators op(cg); // create operators 
u.setOperators(cg); 
PlotStuff ps; // make an object for plotting 
// --- solve a PDE ---- 
float t=O, dt=.005, a=l., b=l., nu=.i; 
for( int step=O; step<lOO; step++ ) 
-t 

u+=dt*( -a*u.xO-b*u.yO+nu*(u.xx()+u.yy()) ); 



* Choose the overlapping 
grid: stir.hdf 
stir.show 
incompressibleNavierStokes 
turn off twilight zone 
project initial conditions 
turn on moving grids 
specify grids to move 

stir 
rotate 
0. 0. 0. 
.5 

done 
choose grids for implicit 

all=explicit 
stir=implicit 

done 
pde parameters 

nu 
.Ol 

done 
boundary conditions 

all=noSlipWall 
done 
initial conditions 

uniform flow 
p=l. 

final time (tf=) 
3 

0.50 

0.00 

-0.25 

-0.50 -0.25 0.00 0.25 0.50 
x times to plot (tp=) 

,025 

0.626 

0.469 

0391 

FIG. 5. On the left is a sample script command file for running the flow solver OverBlown. 
On the right is the result from the computation of incompressible flow around a rotating stirring 

t+=dt ; 
u. interpolate 0 ; // interpolate overlapping boundaries 
// apply the BC u=O on all boundaries 
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.~; 
u.finishE%oundaryConditions(); 
ps . contour(u) ; // plot contours of the solution 

1 - 
return 0; 

The PlotStuf f object is used to interactively plot contours of the solution at each time 
step[17]. 

Overture can be easily used by the numerical analyst to develop PDE solvers for 
overlapping grids. Within our research group we are also developing sophisticated PDE 
solvers for various applications that we hope to distribute in the near future. For example, 
the OverBlown Navier-Stokes solver is being developed for solving the Navier-Stokes 
equations at different Mach numbers. Figure (5) shows streamlines of the solution to 
the incompressible Navier-Stokes equations around a rotating stirring stick and the script 
file that was used to run OverBlown. Figure (6) shows results of a three-dimensional 
computation from OverBlown. 

3 Performance 
Overture makes extensive use of the A++/P++ array class library that supports array 

.operations on both serial and parallel machines. In the current implementation, the array 



FIG. 6. Incompressible j4ow through a three-dimensional valve 

operations can be 2-8 times slower that Fortran 77 on some cache based architectures. 
However, preliminary results from the ROSE preprocessor project indicate that full 
Fortran 77 performance can be recovered from the array statements since the preprocessor 
can replace the high level operations by multi-dimensional loops. It has also been shown that 
a common array operation of an array statement inside a loop (such as a Jacobi iteration) 
can actually be made to run over twice as fast as the standard Fortran 77 implementation. 
These preliminary results show that high level implementations may actually have a greater 
practical potential for performance gains than a lower level approach. It is much easier to 
have a preprocessor that understands the semantics of a class interpret high-level statements 
and prodlice (perhaps lengthly) optimized code that to write this same code in many places 
through-out a long program. For further details see the article on Optimirataons for Parallel 
Object-Oriented Frameworks in this proceedings. 

4 Software availability 
The Overture framework and documentation is available for public distribution from the 
web site,http://www.llnl.gov/casc/Overture. 
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